Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/machinelearning_interview/-1768-1769-1770-1768-): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Machine learning Interview | Telegram Webview: machinelearning_interview/1768 -
Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 Математические датасет OpenMathReasoning и модели OpenMath-Nemotron - победители олимпиады AIMO-2.

NVIDIA представила новый подход к обучению моделей для сложных математических задач, заняв первое место в конкурсе Kaggle AIMO-2.

Секрет — в огромном датасете OpenMathReasoning, который состоит из 540 тыс. уникальных задач с Art of Problem Solving, 3,2 млн. многошаговых решений (CoT) и 1,7 млн. примеров с интеграцией кода (TIR).

Для сравнения: это в разы больше, чем в популярных аналогах MATH и GSM8K. Все это дополнено 566 тыс. примеров для обучения генеративному выбору решений (GenSelect) — методу, который лучше, чем классическое голосование большинством.

OpenMathReasoning создавался тщательно и ответственно. Сначала задачи фильтровались через Qwen2.5-32B, чтобы убрать простые или дублирующие бенчмарки. Затем DeepSeek-R1 и QwQ-32B генерировали решения, а итеративная тренировка с жесткой фильтрацией улучшала качество. Например, код в TIR-решениях должен был не просто проверять шаги, а давать принципиально новые вычисления — вроде перебора вариантов или численного решения уравнений.

Модели OpenMath-Nemotron (1,5B–32B параметров), обученные на этом наборе данных показали SOTA-результаты. 14B-версия в режиме TIR решает 76,3% задач AIME24 против 65,8% у базового DeepSeek-R1. А с GenSelect, который анализирует 16 кандидатов за раз, точность взлетает до 90%. Даже 1,5B-модель с GenSelect обгоняет 32B-гиганты в отдельных тестах.


📌Лицензирование: CC-BY-4.0 License.


🟡Набор моделей
🟡Arxiv
🟡Датасет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Math #Dataset #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1768
Create:
Last Update:

🌟 Математические датасет OpenMathReasoning и модели OpenMath-Nemotron - победители олимпиады AIMO-2.

NVIDIA представила новый подход к обучению моделей для сложных математических задач, заняв первое место в конкурсе Kaggle AIMO-2.

Секрет — в огромном датасете OpenMathReasoning, который состоит из 540 тыс. уникальных задач с Art of Problem Solving, 3,2 млн. многошаговых решений (CoT) и 1,7 млн. примеров с интеграцией кода (TIR).

Для сравнения: это в разы больше, чем в популярных аналогах MATH и GSM8K. Все это дополнено 566 тыс. примеров для обучения генеративному выбору решений (GenSelect) — методу, который лучше, чем классическое голосование большинством.

OpenMathReasoning создавался тщательно и ответственно. Сначала задачи фильтровались через Qwen2.5-32B, чтобы убрать простые или дублирующие бенчмарки. Затем DeepSeek-R1 и QwQ-32B генерировали решения, а итеративная тренировка с жесткой фильтрацией улучшала качество. Например, код в TIR-решениях должен был не просто проверять шаги, а давать принципиально новые вычисления — вроде перебора вариантов или численного решения уравнений.

Модели OpenMath-Nemotron (1,5B–32B параметров), обученные на этом наборе данных показали SOTA-результаты. 14B-версия в режиме TIR решает 76,3% задач AIME24 против 65,8% у базового DeepSeek-R1. А с GenSelect, который анализирует 16 кандидатов за раз, точность взлетает до 90%. Даже 1,5B-модель с GenSelect обгоняет 32B-гиганты в отдельных тестах.


📌Лицензирование: CC-BY-4.0 License.


🟡Набор моделей
🟡Arxiv
🟡Датасет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Math #Dataset #NVIDIA

BY Machine learning Interview






Share with your friend now:
tg-me.com/machinelearning_interview/1768

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

The SSE was the first modern stock exchange to open in China, with trading commencing in 1990. It has now grown to become the largest stock exchange in Asia and the third-largest in the world by market capitalization, which stood at RMB 50.6 trillion (US$7.8 trillion) as of September 2021. Stocks (both A-shares and B-shares), bonds, funds, and derivatives are traded on the exchange. The SEE has two trading boards, the Main Board and the Science and Technology Innovation Board, the latter more commonly known as the STAR Market. The Main Board mainly hosts large, well-established Chinese companies and lists both A-shares and B-shares.

What Is Bitcoin?

Bitcoin is a decentralized digital currency that you can buy, sell and exchange directly, without an intermediary like a bank. Bitcoin’s creator, Satoshi Nakamoto, originally described the need for “an electronic payment system based on cryptographic proof instead of trust.” Each and every Bitcoin transaction that’s ever been made exists on a public ledger accessible to everyone, making transactions hard to reverse and difficult to fake. That’s by design: Core to their decentralized nature, Bitcoins aren’t backed by the government or any issuing institution, and there’s nothing to guarantee their value besides the proof baked in the heart of the system. “The reason why it’s worth money is simply because we, as people, decided it has value—same as gold,” says Anton Mozgovoy, co-founder & CEO of digital financial service company Holyheld.

Machine learning Interview from nl


Telegram Machine learning Interview
FROM USA